Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38256039

RESUMO

Among the vascular prostheses used for aortic replacement, 95% are woven or knitted grafts from polyester fibers. Such grafts require sealing, for which gelatin (Gel) is most often used. Sometimes antibiotics are added to the sealant. We used gelatin type A (GelA) or type B (GelB), containing one of the three antibiotics (Rifampicin, Ceftriaxone, or Vancomycin) in the sealant films. Our goal was to study the effect of these combinations on the mechanical and antibacterial properties and the cytocompatibility of the grafts. The mechanical characteristics were evaluated using water permeability and kinking radius. Antibacterial properties were studied using the disk diffusion method. Cytocompatibility with EA.hy926 endothelial cells was assessed via indirect cytotoxicity, cell adhesion, and viability upon direct contact with the samples (3, 7, and 14 days). Scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) were used to visualize the cells in the deep layers of the graft wall. "GelA + Vancomycin" and "GelB + vancomycin" grafts showed similar good mechanical characteristics (permeability~10 mL/min/cm2, kinking radius 21 mm) and antibacterial properties (inhibition zones for Staphilococcus aureus~15 mm, for Enterococcus faecalis~12 mm). The other samples did not exhibit any antibacterial properties. The cytocompatibility was good in all the tested groups, but endothelial cells exhibited the ability to self-organize capillary-like structures only when interacting with the "GelB + antibiotics" coatings. Based on the results obtained, we consider "GelB + vancomycin" sealant to be the most promising.


Assuntos
Antibacterianos , Gelatina , Antibacterianos/farmacologia , Vancomicina/farmacologia , Células Endoteliais , Ceftriaxona
2.
Polymers (Basel) ; 15(21)2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37959984

RESUMO

Poly-ε-caprolactone ((1,7)-polyoxepan-2-one; PCL) is a biodegradable polymer widely used in various fields of bioengineering, but its behavior in long-term studies appears to depend on many conditions, such as application specificity, chemical structure, in vivo test systems, and even environmental conditions in which the construction is exploited in. In this study, we offer an observation of the remote outcomes of PCL tubular grafts for abdominal aorta replacement in an in vivo experiment on a rat model. Adult Wistar rats were implanted with PCL vascular matrices and observed for 180 days. The results of ultrasound diagnostics and X-ray tomography (CBCT) show that the grafts maintained patency for the entire follow-up period without thrombosis, leakage, or interruptions, but different types of tissue reactions were found at this time point. By the day of examination, all the implants revealed a confluent endothelial monolayer covering layers of hyperplastic neointima formed on the luminal surface of the grafts. Foreign body reactions were found in several explants including those without signs of stenosis. Most of the scaffolds showed a pronounced infiltration with fibroblastic cells. All the samples revealed subintimal calcium phosphate deposits. A correlation between chondroid metaplasia in profound cells of neointima and the process of mineralization was supported by immunohistochemical (IHC) staining for S100 proteins and EDS mapping. Microscopy showed that the scaffolds with an intensive inflammatory response or formed fibrotic capsules retain their fibrillar structure even on day 180 after implantation, but matrices infiltrated with viable cells partially save the original fibrillary network. This research highlights the advantages of PCL vascular scaffolds, such as graft permeability, revitalization, and good surgical outcomes. The disadvantages are low biodegradation rates and exceptionally high risks of mineralization and intimal hyperplasia.

3.
Biomedicines ; 11(11)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002101

RESUMO

Valved conduits are often required to replace pulmonary arteries (PA). A widely used Contegra device is made of bovine jugular vein (BJV), preserved with glutaraldehyde (GA) and iso-propanol. However, it has several drawbacks that may be attributed to its chemical treatment. We hypothesized that the use of an alternative preservation compound may significantly improve BJV conduit performance. This study aimed to compare the macroscopic and microscopic properties of the BJV treated with diepoxide (DE) and GA in a porcine model. Twelve DE-BJVs and four Contegra conduits were used for PA replacement in minipigs. To assess the isolated influence of GA, we included an additional control group-BJV treated with 0.625% GA (n = 4). The animals were withdrawn after 6 months of follow-up and the conduits were examined. Explanted DE-BJV had a soft elastic wall with no signs of thrombosis or calcification and good conduit integration, including myofibroblast germination, an ingrowth of soft connective tissue formations and remarkable neoangiogenesis. The inner surface of DE-BJVs was covered by a thin neointimal layer with a solid endothelium. Contegra grafts had a stiffer wall with thrombosis on the leaflets. Calcified foci, chondroid metaplasia, and hyalinosis were observed within the wall. The distal anastomotic sites had hyperplastic neointima, partially covered with the endothelium. The wall of GA-BJV was stiff and rigid with degenerative changes, a substantial amount of calcium deposits and dense fibrotic formations in adventitia. An irregular neointimal layer was presented in the anastomotic sites without endothelial cover in the GA BJV wall. These results demonstrate that DE treatment improves conduit integration and the endothelialization of the inner surface while preventing the mineralization of the BJV, which may reduce the risk of early conduit dysfunction.

4.
Int J Mol Sci ; 24(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37047671

RESUMO

The cytocompatibility of titanium oxides (TiO2) and oxynitrides (N-TiO2, TiOxNy) thin films depends heavily on the surface topography. Considering that the initial relief of the substrate and the coating are summed up in the final topography of the surface, it can be expected that the same sputtering modes result in different surface topography if the substrate differs. Here, we investigated the problem by examining 16 groups of samples differing in surface topography; 8 of them were hand-abraded and 8 were machine-polished. Magnetron sputtering was performed in a reaction gas medium with various N2:O2 ratios and bias voltages. Abraded and polished uncoated samples served as controls. The surfaces were studied using atomic force microscopy (AFM). The cytocompatibility of coatings was evaluated in terms of cytotoxicity, adhesion, viability, and NO production. It has been shown that the cytocompatibility of thin films largely depends on the surface nanostructure. Both excessively low and excessively high density of peaks, high and low kurtosis of height distribution (Sku), and low rates of mean summit curvature (Ssc) have a negative effect. Optimal cytocompatibility was demonstrated by abraded surface with a TiOxNy thin film sputtered at N2:O2 = 1:1 and Ub = 0 V. The nanopeaks of this surface had a maximum height, a density of about 0.5 per 1 µm2, Sku from 4 to 5, and an Ssc greater than 0.6. We believe that the excessive sharpness of surface nanostructures formed during magnetron sputtering of TiO2 and N-TiO2 films, especially at a high density of these structures, prevents both adhesion of endothelial cells, and their further proliferation and functioning. This effect is apparently due to damage to the cell membrane. At low height, kurtosis, and peak density, the main factor affecting the cell/surface interface is inefficient cell adhesion.


Assuntos
Células Endoteliais , Nanoestruturas , Titânio/química , Nanoestruturas/química , Microscopia de Força Atômica
5.
Int J Mol Sci ; 23(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36499509

RESUMO

Titanium oxide (TiO2) and oxynitride (N-TiO2) coatings can increase nitinol stents' cytocompatibility with endothelial cells. Methods of TiO2 and N-TiO2 sputtering and cytocompatibility assessments vary significantly among different research groups, making it difficult to compare results. The aim of this work was to develop an integral cytocompatibility index (ICI) and a decision tree algorithm (DTA) using the "EA.hy926 cell/TiO2 or N-TiO2 coating" model and to determine the optimal cytocompatible coating. Magnetron sputtering was performed in a reaction gas medium with various N2:O2 ratios and bias voltages. The samples' morphology was studied by scanning electron microscopy (SEM) and Raman spectroscopy. The cytocompatibility of the coatings was evaluated in terms of their cytotoxicity, adhesion, viability, and NO production. The ICI and DTA were developed to assess the cytocompatibility of the samples. Both algorithms demonstrated the best cytocompatibility for the sample sputtered at Ubias = 0 V and a gas ratio of N2:O2 = 2:1, in which the rutile phase dominated. The DTA provided more detailed information about the cytocompatibility, which depended on the sputtering mode, surface morphology, and crystalline phase. The proposed mathematical models relate the cytocompatibility and the studied physical characteristics.


Assuntos
Células Endoteliais , Titânio , Titânio/toxicidade , Titânio/química , Microscopia Eletrônica de Varredura , Análise Espectral Raman
6.
Polymers (Basel) ; 14(16)2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36015570

RESUMO

Electrospun tissue-engineered grafts made of biodegradable materials have become a perspective search field in terms of vascular replacement, and more research is required to describe their in vivo transformation. This study aimed to give a detailed observation of hemodynamic and structural properties of electrospun, monolayered poly-ε-caprolactone (PCL) grafts in an in vivo experiment using a rat aorta replacement model at 10, 30, 60 and 90 implantation days. It was shown using ultrasound diagnostic and X-ray tomography that PCL grafts maintain patency throughout the entire follow-up period, without stenosis or thrombosis. Vascular compliance, assessed by the resistance index (RI), remains at the stable level from the 10th to the 90th day. A histological study using hematoxylin-eosin (H&E), von Kossa and Russell-Movat pentachrome staining demonstrated the dynamics of tissue response to the implant. By the 10th day, an endothelial monolayer was forming on the graft luminal surface, followed by the gradual growth and compaction of the neointima up to the 90th day. The intense inflammatory cellular reaction observed on the 10th day in the thickness of the scaffold was changed by the fibroblast and myofibroblast penetration by the 30th day. The cellularity maximum was reached on the 60th day, but by the 90th day the cellularity significantly (p = 0.02) decreased. From the 60th day, in some samples, the calcium phosphate depositions were revealed at the scaffold-neointima interface. Scanning electron microscopy showed that the scaffolds retained their fibrillar structure up to the 90th day. Thus, we have shown that the advantages of PCL scaffolds are excellent endothelialization and good surgical outcome. The disadvantages include their slow biodegradation, ineffective cellularization, and risks for mineralization and intimal hyperplasia.

7.
J Biomed Mater Res A ; 110(2): 394-408, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34390309

RESUMO

The aim of this study was to compare the mechanical properties and thermal stability of the venous wall depending on the treatment method used, and, accordingly, on those structural changes in the tissue that this treatment causes. Bovine jugular vein walls (BJVWs) cross-linked with glutaraldehyde (GA), ethylene glycol diglycidyl ether (DE), and Contegra commercial conduit were evaluated using uniaxial stretching [with and without pre-conditioning (PreC)], differential scanning calorimetry, amino acid analysis, and attenuated total reflection infrared spectroscopy. Fresh BJVW was used as a control. It was shown that failure stress in non-PreC GA-treated and DE-treated materials was lower than that in fresh and Contegra counterparts. Contegra samples were the stiffest among the tested materials. Cyclic preloading leads to distortion of the mechanical behavior of this material, which is heterogeneous in composition and structure. The denaturation temperatures (Td ) of all cross-linked BJVWs were higher than the Td of the fresh vein. The microstructures of the tested BJVWs did not exhibit any differences, but the cross-linking density and hydration of the DE-vein were the highest. GA-cross-linking or DE-cross-linking and isopropanol exposure (Contegra) changed the protein secondary structures of the tested materials in different ways. We hypothesized that the protein secondary structure and hydration degree are the main causes of differences in the mechanical properties and thermal stability of BJVW.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Bovinos , Glutaral , Veias Jugulares , Temperatura
8.
Mater Sci Eng C Mater Biol Appl ; 118: 111473, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33255052

RESUMO

Bioprosthetic heart valves made from bovine pericardium (BP) and porcine pericardium (PP) preserved with glutaraldehyde (GA) are commonly used in valve surgeries but prone to calcification in many patients. In this study, we compared BP and PP preserved with GA, ethylene glycol diglycidyl ether (DE), and 1,2,3,4,6-penta-O-{1-[2-(glycidyloxy)ethoxy]ethyl}-d-glucopyranose (PE). We studied the stabilities of DE and PE in preservation media along with the amino acid (AA) compositions, Fourier-transform infrared spectra, mechanical properties, surface morphologies, thermal stability, calcification, and the cytocompatibility of BP and PP treated with 0.625% GA, 5% DE, 2% PE, and alternating 5% DE and 2% PE for 3 + 11 d and 10 + 10 d, respectively. Both epoxides were stable in the water-buffer solutions (pH 7.4). DE provided high linkage densities in BP and PP owing to reactions with Hyl, Lys, His, Arg, Ser, and Tyr. PE reacted weakly with these AAs but strongly with Met. High cross-linking density obtained using the 10 d + 10 d method provided satisfactory thermal stability of biomaterials. The epoxy preservations improved cytocompatibility and resistance to calcification. PE enhanced the stress/strain properties of the xenogeneic pericardia, perhaps by forming nanostructures that were clearly visualised in BP using scanning electron microscopy. The DE + PE combination, in an alternating cross-linking manner, thus constitutes a promising option for developing bioprosthetic pericardia.


Assuntos
Bioprótese , Próteses Valvulares Cardíacas , Animais , Bovinos , Reagentes de Ligações Cruzadas , Glutaral , Humanos , Pericárdio , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...